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OPTIMAL DAMPING AND STOCHASTIC CONTROL IN CERTAIN

AERODYNAMIC PROBLEMS

V. T. Tarushkin

On the basis of methods of controllable Markoviian random pro- /114

cesses is constructed a theory of optimal damping. The case where

interference is a process of the white noise typeois discussed in-

dividually and for it is given a derivation of all main relation-

ships of the theory of random processes. The application of this

theory to the problem of retarding rotation of an aircraft is given.

1. Methods of stochastic control and the theory of

optimal damping

Given that an n-dimensional vectorial Markovian diffusion

process y satisfies a system of stochastic differential e',uations

in the Ito form:

dy (t)= f [t, y (t), u] dt+a [t, y (t), ul] dw.
S ... (1.1)

Here f is the n-dimensional vector of transposition, an a-matrix

of diffusion of dimensionality n x, m, where w is an m-dimensional

process of Brownian motion with a unique dispersion parameter,

u[t, y(t)] is an r-dimensional vector of control effects from a

given set U of permissible piecewise-continuous functions. Limi-

tations on transposition, diffusion and control are given such

that equation (1.1) for several intervals of [TO , T] '( 0, T] is

equivalent to the integral equation

y ()=y(o)+ f f[s, y(s), uds+

+ o[s, y(s), u]dw(s). (1.2)
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For equation (1.2) are assumed fulfilled the conditions of the

theorem of existence and uniqueness of the diffusion Markovian

processin the interval [TO, T] with initial conditions y(T0 )

[1-2]. It is also assumed that the interval [0, T] can be dis-

covered with the aid of a finite number of intervals of the form

[T0 , T1, where TO is in identity with any moment of motion along

the trajectory, and --with the moment of acquisition of the

surface of reversing by the system. Under the condition that for

each moment t (- [0, TI it known an observable value of yt of the /115

process y(t), we must find the minimal value of the functional

EfL Vy), Iy )dy (0)= yo. (1.3)

for u (-U. Here E is a symbol of mathematical expectation.

Let us introduce the function

T

V [t, y (t)] = !I [, y () , y ([) d(,

and also define the a-algebra of Yt = a{y, 0 < s < t} , generated

by the values of ys for 0 < s < t. Due to the fact that for any

t [0, T] yt = y(t),

E(V t, y (t)11Yt=EIV[t, y,]/YI.. :

Since yt is measured with respect to Yt' theorem 8.3 [3] (p. 27)

yields the condition at which with a probability of 1

E V(,, y,)lY}=v, y,)..

The condition of applicability of this theorem consists of the

fact that function V(t, yt) is for t . [0, T] measurable with re-

spect to Yt' and also EIV(t, yt) I < m.
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Therefore, with a probability of 1 takes place

V(, Yt) E L[, y (), u[r y ( d)l]yd 4 [ (1.4)

Relationship (1.4) is a stochastic function of Lyapunov [4-51 for

which

.. (, y ) . (1.5)

Let us find the optimal control based on the Bellman equation:

m ' +±V -- f + tr d o'  (1.6)0.

Here the prime ' signifies transposition, and the symbol tr--the

matrix spur.

From equation (1.6) it follows that if the diffusion matrix

a and function L do not depend on control, the minimum in (1.6)

is attained when the minimum of function

F vdytd (1.7)

is also attained. The relation (1.7) is introduced in [6] as a

criterion of optimal damping of a determinate Lyapunov function.

To substantiate relations (1.6)-(1.7), let us apply the method

systematically developed in [4-5] and prove the theorems which /116

define optimal control.

Let us introduce the operator A(u) which applies to the func-

tion V yielding

A(u)= i+ytr 2v a + f (1.8)
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With the aid of (1.8), the Ito differential formula [2] is written

in the form

dV(t, y>)(A(u)V dt+Vtdw. (1.9)

Integrating (1.9) and taking the arbitrary mathematical expecta-

tion, we arrive at the integral formula of Dynkin-Ito [4-5], which

with allowance for (1.5) is written as

El-V(t, y1)/Y1 =E {fA (U)Vd/Yt . (1.10)
.... _ -- . _ . . _ .-

Given u0 -U satisfies equation (1.6), then takes place for t {
( [0, T]

A(u.)V+LIt, u.] n<A (u)V+L t, y, (1.11)

Integrating (1.11) and taking the arbitrary mathematical expecta-

tion with allowance for (1.10), we find that

E{IfLI, y, uol d,!Y4 E f IT y, uld TlYt (1.12)

or due to (1.4) we have

V iyt (Uo)<V (, y(t(u)], tE [0, T). (1.13)

Therefore, the following assertion,4is proven.

Theorem: The condition of optini'al damping is a sufficient

criterion for finding the optimal control under the condition

that the integrand of the function and the diffusion matrix ,are

not explicitly control-dependent.
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2. Control in the Presence of White Noise

Let us introduce the Gaussian random process v[t, y(t)] of

the white noise type, having a zero mean of

Ev (t, y)/y (Ot)=y-- (2.1)

and a covariation matrix

E v[ty (t)]vls, y(s)]' I y (t)=y, Ri(t, yt) S(t (2.2)--- . - -,(2.2)

where 6(t - s) is a Dirac function, R = ao'. We will show that

if (1.2) underoges a formal substitution of

dwad = (2.3)

the basic relations of the preceeding section can be derived on /117

the basis of ordinary analytic methods of generalized Dirac func-

tions.

Equation (1.2) is written as follows for this case

Y ()=y(o)+ /ds + fds. (2.4)

Assuming in (2.4) that O = t = t + At, Ay t = (t + At) - y(t),

and taking into account (2.1) and (2.2), we find that

lirn .--E {Ayt/y (t)=y t) =.f It, .Y, u (t, y)],
At-O

lim af EAy, Ay;/y(t)=yt1=R(t, y,). (2.5)

Let us introduce the funtion of risk
0

S S(t, yt)--E{ L[t, y-(), uat, y(c)jdll/y (i)> Yt _ (2.6)
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Function (2.6) has the same meaning as (1.4). It'is easy to see

that with a probability of 1 takes place

E IS(t, y,)y (t)=y=S((, y1), E I a
2S -(t) } = 'd

I dy, at /Y Ot ay, t

E(oas(t,. y (t) yt as(t. yt) (OS (t y,) 7, -S (t, yd'
E { dS(t, Yt) /Y ( yt) ' dS(t, Yt)

These properties follow from the definition of the risk function

and can be formally proven with the aid of the aforementioned

theorem 8.3 [3].

Let us consider the expansion bf the iisk function into a

Taylor series up to terms of the second power exclusively

S(t+At, y,+Ayt)=S(t, y)+ as At +

dyt A y  dytat
I 02S (t, yt) -1 0

2S (t, Yt) yt Ay.
± 2 rt2 2 Oy

(2.8)

It is easy to see that relatiohship -(2.8), ,a l though it externailly

resembles (1.9), does not correspond to it, since.white noise as

a generalized deriVative of Brownian motion is defined by equation /118

(2.2) and not by the formal relationship

From (2.8), with allowance for (2.5), (2.7), we find that

ori [S(t+At, yt+Ayt)-S(t, yt)/y(t) y,} =

6 S+. trI (2.9)
6 2 t



Let us note that in virtue of (1.8), the right side of (2.9) can

be written in the form A(u)S. It is easy to see that since in

(2.9) the arbitrary mathematical expectation is already taken,

there takes place

E A (u) Sly (t)=yt =A (u) S.
(2.10)

In virtue of (2.10), relationship (2.9) is 'rewritten as

E E{ (-yt) = yJE{A(u) S!Y-()Yt-I (2.11)

Integrating (2.11) with allowance of the fact that S(T, xT) = 0,

we find that

S , E A( S y ) (2.12)

Relation (2.12) is analogous to the Dynkin-Ito formula,F: (1.10).

In virtue of the principle of optimacy of Bellman, we find that

S(t, y,)=mfinE(L[t, y,, u(t, yt)]At+ug -U
. +S(t+At, yt+ y,)!y(t)=yA

(2.13)

Equation (2.13) in virtue of (2.7) is.rewritten as

• ' minE L[t, Yt, u(t, yt)]Alt+S(t+At, yt+AAYt
ugU

-S(t, yt)ly(t) = yt = O.

(2.14)

Let us divide both side of equation (2.14) by At and convert to

the limit where At + 0. In virtue of (2.9), we find the equation

S,- S "(2.15)

ml at yt 2 R+L 0 7
"'' -



Equation (2.15) corresponds to (1.6).

If u = u0 satisfies (2.15), then there takes place

A(uo)S+LIt, yt, uo]<A(u)S+L[t, y', 1uj. (2.16)

Integrating (2.16) and taking the arbitrary mathematical expec-

tation, we derive with allowance of (2.12) that

E L ( , y uo) d /y (t)= vt if L ( y, u ) dtly (')=Y,1
...... .... o (2 .1 7)

Relationship (2.17) is analogous to (1.12).

Aside from the discussed analogy between the processes of /119

white noise and Brownian movement, as a result of this section we

can assert that if (2.13) is a necessary condition of optimacy,

and the boundary value problem (1.5)-(1.6) has a unique solution,

then the necessary and sufficient criteria of optimacy coincide.

3. Retardation of Aircraft Rotation

Let us denote through lx, ly' 1z the projections of kinetic

momentum on an axis of :a systim.,o6f 'coordina tes associated: with.,an

apparatus ,,, and by ux, Uy, uz--projections of direction momentum

on the same axis. Assuming that we have selected the main axes

of coordinates, the equations of motion of the apparatus will be

derived in the form

dl Izlyu
dl Izly lyl1 dt Ux dt +ox d,,

S d IXIZ 1 ,d ad (3.1)

dlz+ y Ixlyl) dt,= uzdt+zdodz.
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Here I , Iy, I are moments of inertia, o dv , c dv , o dv are
x y z x x y y z z

projections of perturbing moment which are the products of cons-.

tant coefficients of diffusion a x', y az multiplied by increases

in independent Brownian movements vx , Vy, vz

In the regularly employed" meters [7], projections of the

angular velocities are measured. Considering that the measuring

circuit contains elements which multiply the measurable signal

by moments of inertia, we will consider that projections of kine-

tic momentum are being measured. Therefore, equations for the

measurable coordinates have the form

x-=x, y=ly, 2-z.r. (3.2)

In the capacity of a function for optimal damping, we will select
1 2 2 2

V = (x + y + z ). The minimized relationship (1.7) in this

case will be written as

. =xut+yuy+zu . (3.3)

Let us consider the following cases of limitations on the direc-

tional momentum.

1. Directibnal momentum is not limited. The scalar pro-

duct of (3.3) will be minimal when the control vector is anti-

parallel to the vector {x, y, z }', i.e., u = {-kx, -ky, -kz} ',

k = const > 0.

2. Each of the components of the directional momentum is /120

limited in amplitude, i.e., uxl : Tx , IUyl I Ty, JUzl Tz, where

Tx Ty TZ are several constants. In this case

=-Tsignx, u=-jTsigny, u=,-Tsign.9
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3. Directional momentum is limited in modulus, i.e., ul

< T, T = const. In this case

u.=-T- x Uy=-T Y

For the case where there is no interference in the measure-

ment channel, the structure of the first two laws without re-

search of optimacy is cited in [7]. The derivation of the third

law in the absence of interference as control of rotation in terms

of speed of response is cited in [8].

Let us note that the simplest structure of control is derived

in the first instance. But it has a limited application, since in

practice the directional moments are usually limited. The most

complex is the structure of control

Y ,I P;aReabc Cbsef-m derived in the third case, which re-

quires for its realization the use

u =-T , signX of nonlinear signal transformers.

The second case is most optimal from

" -- the standpoint of simplicity of re-

alization allowing for the limita-Structural diagram of com-
puter device implementing tions. In this context, control of
.law of control with re- all three channels is done indepen-
spect to channel 1.

dently, while the structural circuits

of the computers implementing the laws of control are identical.

The structural diagram of a computer for this case, which realizes

the law of control with respect to channel 1, is given in the fi-

gure.

The scheme of formation of the law'of control includes a

threshold element (1) at whose input enters signal x; at the out-

10



put we have signal sign x, and also element (2) which multiplies

the signal sign x by the number Tx.

Let us condider the case of absent interference, when V =
1 2 + 12 2
= (1 + 1 + 1 ) , and a = a = a = 0. It is easy to see that

in virtue of (3.1)

dV 1y' l h-It
dtz+1 + Iyz+

+ 1, _I,l ]lil'+u+ (3.4)

The expression in square brackets in (3.4) is transformed to the /121

form

1 , xI -Ix- ' + lyz-lyx + Ilx-zIy

and vanishes. Hence (3.4) is written as

dV (3 5)
t lxux+lyu, + l z uy (3 .5)

Let us note that (3.5) has the same meaning as (3.3); for the

three laws of control it is negative, ensuring decrease of kine-

tic momentum.

In the stochastic case, by formula (1.9) we find that

SdV= [ - +- xyz+ xyz dl+

+ [xu+yau+ziu]dt 24 (o + +0).d +
. +xoa dv±%y dvyzq'. ,"

(3.6)

Let us note that in (3.6) the expression in the first square

brackets vanishes as before. Taking the arbitrary mathematical

expectation in (3.6), we find that
11



S.(3.7)

Relationship (3.7) shows that thed rate of decrease in kinetic

momentum is largely dependent on interference.
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